
Geometry and Optimization

Simon Flöry

These slides discuss the basics of geometry optimization in parametric modelling environments.
They comprise edited course material of a lecture on CAAD and Geometry for students of

Architecture, taught at Vienna University of Technology in winter 2012/2013.

s o f t w a r e a n d c o n s u l t i n g

About the Author Simon Flöry holds a PhD in mathematics from Vienna
University of Technology and has several years of research, working and teaching
experience in Architectural Geometry, Applied Geometry and Geometry
Processing. Having a great interest in various aspects of software development, he
has been maintaining and contributing to open-source software projects for more
than a decade. Since 2012, he is leading the Vienna-based software and
consulting company Rechenraum e.U..

http://www.rechenraum.com
http://www.rechenraum.com

Optimization manages limited ressources.

Optimization guides complex processes.

Optimization imitates nature.

Functions

Optimization

Examples

Functions

We describe a close relation between parametric models and the mathematical notion
of a function. We identify a special type of a parametric model (and a function) that

is the base of any optimization.

𝐸 𝐹

Consider two points 𝐸 and 𝐹 .

The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝐸 𝐹

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝑥 = 0 𝑥 = 1

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝐸 𝐹𝑥 = 1
6

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝐸 𝐹𝑥 = 1
3

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝐸 𝐹𝑥 = 0.5

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝐸 𝐹𝑥 = 2
3

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

𝐸 𝐹𝑥 = 5
6

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

Consider two points 𝐸 and 𝐹 . The expression

(1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

describes for varying 𝑥 all points on the line connecting 𝐸
and 𝐹 .

Example: affine_combination

𝐸 𝑃(𝑥) 𝐹

For given 𝑥, let us write 𝑃(𝑥) for the point on the line
connecting 𝐸 and 𝐹 .

𝐸 𝑃(𝑥) 𝐹

The expression

𝑃(𝑥) = (1 − 𝑥) ⋅ 𝐸 + 𝑥 ⋅ 𝐹

is not only a formal description of a parametric model but a
function in a mathematical sense.

𝐸 𝑃(𝑥) 𝐹

We have
• two constant inputs 𝐸 and 𝐹

• a single variable input 𝑥
• and the two-dimensional coordinates of 𝑃(𝑥) as output.

𝐸 𝑃(𝑥) 𝐹

We have
• two constant inputs 𝐸 and 𝐹
• a single variable input 𝑥

• and the two-dimensional coordinates of 𝑃(𝑥) as output.

𝐸 𝑃(𝑥) 𝐹

We have
• two constant inputs 𝐸 and 𝐹
• a single variable input 𝑥
• and the two-dimensional coordinates of 𝑃(𝑥) as output.

input function /
parametric model

output

A function may have any kind and number of inputs and
outputs: a single or several points, entire surfaces, single
values, ...

input function /
parametric model

single value

Functions with single valued output are special. We may
think of the output as a quality measure that rates the
input.

Welcome to the world of optimization: Here we deal with
functions of arbitrary input with a single value as output.
Our goal is to minimize or maximize this quality measure.

Optimization

We will see why derivatives of functions are important for optimization. As derivatives
are not available in all cases (e.g. in a parametric modelling context), we discuss

strategies to get around computing explicit derivatives.

𝐸 𝑃(𝑥) 𝐹

𝑄

𝑑(𝑥)

Let’s find that point on the connecting line of 𝐸 and 𝐹 that
is closest to a third point 𝑄.

𝐸 𝑃(𝑥) 𝐹

𝑄

𝑑(𝑥)

We build a parametric model suitable for optimization, that
evaluates the (squared) distance of 𝑃(𝑥) to 𝑄 for varying 𝑥,

𝑑(𝑥) = (𝑃(𝑥) − 𝑄)2.

𝐸 𝐶 𝐹

𝑄

As 𝑃(𝑥) moves from left to right, the distance decreases
until the closest point 𝐶. Then, the distance grows again.

Example: closest_point

0 1 𝑥

𝑑(𝑥)

We visualize the changing distance in a chart. For each
value of the variable input 𝑥, we write down the single
valued output of our model.

0 1 𝑥

𝑑(𝑥)

We easily spot the closest point configuration in the chart.
How may we describe the solution formally?

0 1 𝑥

𝑑(𝑥)

Recall, that a tangent is that line approximating a given
curve best in a point, and that the tangent’s slope is given
by a function’s derivative.

0 1 𝑥

𝑑(𝑥)

Obviously, the solution to our optimization problem is that
point, in which the tangent is horizontal, e.g. has no slope
as the function’s derivative is 0.

0 1 𝑥

𝑑(𝑥)

This leads to an important first conclusion: For parametric
models with single variable input and single valued output,
the derivative must vanish in an optimal point.

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑓(𝑥, 𝑦)

What about parametric models with multiple variable
inputs? As their output is always single valued, we may still
generate charts (over multi-dimensional domains).

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑓(𝑥, 𝑦)

In an optimal point, the tangent plane to the chart is
horizontal. The gradient, a generalization of derivatives to
functions with multiple variable inputs, must be zero.

𝑓 ′(𝑥)!
Nearly all local optimization algorithms build on gradient
information to compute a point of vanishing gradient.

𝑓 ′(𝑥)?
If derivatives are not available (e.g. in a parametric
modelling environment), one estimates gradients numerically.

A word of warning: Relying on derivatives for optimization
works only if we start in the vicinity of the optimal solution.

If we don’t have a good initial guess available, we employ a
two-phase approach: Global optimization brings us close to
the optimal solution. Local optimization computes the final
result efficiently.

Examples

In a handful of examples we make use of optimization principles to generate geometry.

The following examples rely on goat, a free component for local optimization
(numerically estimating gradients) and global optimization (among others, an
evolutionary solver) for the parametric modelling environment Grasshopper, itself a
plugin to the 3D modelling system Rhino. All examples are available for download at
http://www.rechenraum.com/goat. For all optimization examples, double-click the
goat component and start the optimization with default settings.

http://www.rechenraum.com/goat
http://www.gasshopper3d.com/
http://www.rhino3d.com/
http://www.rechenraum.com/goat
http://www.gasshopper3d.com/
http://www.rhino3d.com
http://www.rechenraum.com/goat

Problem Statement Given four boundary curves, construct a surface
of minimal area.

Constant Input Four curves defining the boundary conditions.
Variable Input Four central control points.

Function Construct surface from input and compute area.
Quality Measure Area of constructed surface.

Filename minimal_surface

Tasks:
• Unlink one or several variable(s) from the optimization component. Explore the

solutions for different configurations of the new constant parameter(s).
• Try different local and global solvers with different settings. Which one performs best?
• Modify the parametric model: remove one boundary curve and add two new control

points as new variables.
• What surface will you obtain when the boundary curves are replaced by straight line

segments?

Problem Statement Compute the shortest path between two fixed points
on a surface, a so called geodesic. Wooden strips
follow geodesics when bent onto a surface.

Constant Input A surface and the two end points.
Variable Input Two further interpolation points.

Function Construct curve on surface and measure its length.
Quality Measure Length of generated surface curve.

Filename geodesic

Tasks:
• Modify the shape of the surface and observe, how the path changes.
• Observe how different starting positions for the variable control points yield different

solutions on the same surface. Discuss the reasons!
• Employ a two-phase approach combining global and local optimization to obtain the

same optimal result for all starting curves.
• Add additional control points to get more accurate results and compare with

Grasshopper’s Geodesic component.

Problem Statement Find that hyperbolic paraboloid (HP-surface, hypar)
approximating a given set of points best.

Constant Input A set of data points.
Variable Input The four corners of the HP-surface.

Function Construct hyperbolic paraboloid and measure (squared)
distance to data points.

Quality Measure Sum of (squared) distance from data points to surface.

Filename hypar_fitting

Tasks:
• Bypass the multiplication component to minimize the sum of distances instead of the

sum of squared distances. Try different solvers!
• Displace one point significantly along the normal direction of the optimized surface

and optimize again. How does this outlier change the result for unsquared and squared
distances?

• Fit other surfaces such as cylinders, cones, etc.
• Fix one or several of the variables and observe, how the optimization behaves.

Problem Statement Find that roof configuration maximizing the shadow
for a given sun position.

Constant Input Direction of sun rays and ground plane.
Variable Input The four corners of a HP-surface.

Function Construct hyperbolic paraboloid and its shadow.
Quality Measure Area of shadow region.

Filename roof_shadow

Tasks:
• Fix one or several corners of the roof and observe, how the result changes.
• Change the direction of the incoming light.
• With a light direction of 𭑙 = (1, 0, 1) and all roof corners variable, what will the

optimized result be like? Verify your assumption.
• Instead of maximizing the shadow, maximize the amount of incoming light (e.g.

minimize the shadow).

Appendix

License and Copyright Notices
Version March 26, 2013

The photo on page 3 is copyright by Fir0002/Flagstaffotos and licensed according to
the terms of the GFDL v1.2. (http://www.gnu.org/licenses/fdl-1.2.html).

The photo on page 4 was placed in the public domain by its author M.chohan.

The photo on page 5 was made available by its author brokenchopstick under the
Creative Commons Attribution 2.0 Generic license.

All other contents is copyright by Simon Flöry and licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

	Introduction
	Functions
	Optimization
	Examples
	Appendix

